Section 16.3: The Fundamental Theorem for Line Integrals

What We'll Learn In Section 16.3

- 1. When is a Vector Field on \mathbb{R}^2 Conservative?
- 2. Finding the Potential Function for a Conservative Vector Field
- 3. The Fundamental Theorem for Line Integrals
- 4. Independence of Path
- 5. Conservation of Energy in Physics

1. When is a Vector Field on \mathbb{R}^2 Conservative?

Recall:

- A vector field \vec{F} is called a <u>conservative vector field</u> if it is the gradient of some scalar function.
- That is, \vec{F} is conservative if there is a scalar function f such that $\nabla f = \vec{F}$.
- In this situation f is called a potential function for \vec{F} .

5 Theorem

If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Notes:

- This result is only for vector fields on \mathbb{R}^2
- The other way around is false
- This result is only really useful in showing that a vector field is NOT conservative

1. When is a Vector Field on \mathbb{R}^2 Conservative?

If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Proof:

5 Theorem

When is a Vector Field on R² Conservative? Theorem

If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

<u>Ex 1</u>: Show that $\vec{F} = \langle x^2 y, x + xy \rangle$ is NOT a conservative vector field.

1. When is a Vector Field on \mathbb{R}^2 Conservative? **5** Theorem

If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Ex 2: a) Show that $\vec{F} = \langle x^2 y, \frac{1}{3}x^3 + \sin y \rangle$ satisfies the above condition. b) Does part (a) on its own mean that \vec{F} is conservative? 1. When is a Vector Field on \mathbb{R}^2 Conservative?

<u>Def</u>:

- 1) A subset D of \mathbb{R}^2 is <u>open</u> if given any point in D you can draw a disk around the point that is entirely contained in D. That is, D does not contain any of its boundary points.
- 2) A subset *D* of \mathbb{R}^2 is <u>connected</u> if any 2 points in *D* can be joined by a path entirely contained in *D*.
- 3) A subset *D* of \mathbb{R}^2 is <u>simply-connected</u> if *D* has no holes in it.

6Theorem

Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

Then **F** is conservative.

1. When is a Vector Field on \mathbb{R}^2 Conservative? **Theorem**

Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region *D*. Suppose *P* and *Q* have continuous first-order partial derivatives and

$$rac{\partial P}{\partial y} = rac{\partial Q}{\partial x} \quad ext{throughout } D$$

Then **F** is conservative.

Proof:

From Green's Theorem (next section) and Theorem 4 (end of this section)

1. When is a Vector Field on \mathbb{R}^2 Conservative? **Theorem**

Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region *D*. Suppose *P* and *Q* have continuous first-order partial derivatives and

$$rac{\partial P}{\partial y} = rac{\partial Q}{\partial x} \quad ext{throughout } D$$

Then **F** is conservative.

Ex 2 (again):

a) Show that $\vec{F} = \langle x^2 y, \frac{1}{3}x^3 + \sin y \rangle$ satisfies the above condition. b) Does part (a) on its own mean that \vec{F} is conservative?

- 2. Finding the Potential Function for a Conservative Vector Field
- <u>Ex 3</u>: Consider the vector field $\vec{F} = \langle x y, x 2 \rangle$.
- a) Determine if this vector field is conservative.
- b) If \vec{F} is conservative, find a function f such that $\nabla f = \vec{F}$. That is, find the vector field's potential function.

2. Finding the Potential Function for a Conservative Vector Field

<u>Ex 4</u>: Consider the vector field $\vec{F} = <3 + 2xy$, $x^2 - 3y^2 >$.

- a) Determine if this vector field is conservative.
- b) If \vec{F} is conservative, find a function f such that $\nabla f = \vec{F}$. That is, find the vector field's potential function.

2. Finding the Potential Function for a Conservative Vector Field <u>Ex 5</u>: The vector field $\vec{F} = \langle y^2, 2xy + e^{3z}, 3ye^z \rangle$ is conservative. Find a function *f* such that $\nabla f = \vec{F}$. That is, find the vector field's potential function.

3. The Fundamental Theorem for Line Integrals2 Theorem

Let *C* be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \leq t \leq b$. Let *f* be a differentiable function of two or three variables whose gradient vector ∇f is continuous on *C*. Then

$$\int_{C}
abla f \cdot d\mathbf{r} = f\left(\mathbf{r}\left(b
ight)
ight) - f\left(\mathbf{r}\left(a
ight)
ight)$$

Proof ???:

3. The Fundamental Theorem for Line Integrals

<u>Ex 4 (again)</u>: Consider the vector field $\vec{F} = <3 + 2xy$, $x^2 - 3y^2 >$.

- a) Determine if this vector field is conservative.
- b) If \vec{F} is conservative, find a function f such that $\nabla f = \vec{F}$. That is, find the vector field's potential function.

c) Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where *C* is the curve given by $\vec{r}(t) = \langle e^t \sin t, e^t \cos t \rangle$ $0 \le t \le \pi$ 3. The Fundamental Theorem for Line Integrals

Ex 5 (again):

- a) The vector field $\vec{F} = \langle y^2, 2xy + e^{3z}, 3ye^z \rangle$ is conservative. Find a function *f* such that $\nabla f = \vec{F}$. That is, find the vector field's potential function.
- b) Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where *C* is any space curve that starts

at (0,1,1) and ends at (2, 2, 0).

3. The Fundamental Theorem for Line Integrals

<u>Ex 6</u>: Find the work done by the gravitational field $\vec{F}(\vec{x}) = -\frac{mMG}{|\vec{x}|^3}\vec{x}$ in moving a particle with mass *m* from point (3,4,12) to the point (2,2,0) along a piecewise smooth curve *C*.

(Recall: \vec{F} is conservative and its potential function is $f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$)

• The line integral $\int_C \vec{F} \cdot d\vec{r}$ is <u>independent of path</u> if given any 2 curves C_1

and C_2 with the same starting and ending points, $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$

• The Fundamental Theorem for Line Integrals tells us that conservative vector fields are independent of path.

$$\int_C \nabla f \cdot d\vec{r} = f(\text{ending point}) - f(\text{starting point})$$

• A curve *C* is a <u>closed curve</u> if its starting and ending points are the same. pictures...

3Theorem

 $\int_C \mathbf{F} \cdot d\mathbf{r} \text{ is independent of path in } D \text{ if and only if } \int_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for every closed path } C \text{ in } D.$

3 Theorem

 $\int_C \mathbf{F} \cdot d\mathbf{r} \text{ is independent of path in } D \text{ if and only if } \int_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for every closed path } C \text{ in } D.$

Proof:

4Theorem

Suppose **F** is a vector field that is continuous on an open connected region *D*. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D*, then **F** is a conservative vector field on *D*; that is, there exists a function *f* such that $\nabla f = \mathbf{F}$.

Proof:

5. Conservation of Energy in Physics

Suppose an object of mass *m* is under the influence of a conservative force field $\vec{F}(x, y, z) = \nabla f(x, y, z)$ as it travels in space from point *A* to point *B*....